Page 111 - 《中国图书馆学报》2013年第1期
P. 111
[49] Muller F,Lockerd A. Cheese: Tracking mouse movement activity on websites,a tool for user modeling[ C]//Proceedings
of CHI Extended Abstracts on Human Factors in Computing Systems, 2001: 279 -280.
[50] Jansen B J. Seeking and implemenllng automated assistance during the search process[ J ]. Information Processing &
Management , 2005 , 41 (4) : 909 - 928.
[51] Jansen B J,Spink A,Saracevic T. Real life,real users,and real needs: A study and analysis of user queries on the web
()]. Information Processing & Management, 2000, 36(2) : 207 -227.
[52] Huang J,Efthimiadis E N. Analyzing andevaluating query reformulation strategies in Web ae*trch logs[ Cl//Proceedings
of the 18th ACM Conference on Information and Knowledge Management, 2009: 77 -86.
[53] Liu Yiqun,et al. Automatic query type identification based on click through information[ C]//Springer Berlin / Heidel-
berg, 2006: 593 -600.
[54] Brenes D,Gayo-Avello D. Automatic detection of navigational queries according to behavioral characteristics [ C ]//Pro-
ceedings of Special Interest Group Information Retrieval, 2008: 41 -48.
[55] Steven M,Jensen E C,Lewis D D. Automatic classification of Web queries using very large unlabeled queQ' logs[ J].
ACM Transaction on Information Systems (TOIS) , 2007, 25(2) : 1 -29.
[56] Law E,Mityagin A,Chickering M. Lntentions: A game for classifying search query intent[ C ]//Proceedings of the 27th
International Conference Extended ABSTRAcr on Human Factors in Computing Systems, 2009: 3805 -3810.
[57] Nettleton D,Calderon L,Baeza-Yates R. Analysis of Web search engine query sessions[ C]//Proceedings of WEBKDD,
2006: 1 - 14.
[58] Shen D,Pan R,Sun J. Our winning solution to query classification in KDD Cup[ Jl. ACM SIGKDD Explorations Newsle-
tter, 2005, 7(2) : 100 -110.
[59] Kardkovacs Z,Tikk D,Bansaghi Z. The ferrety algorithm for the KDD Cup 2005 problem[ Jl. ACM SIGKDD Explora-
tions Newsletter, 2005, 7(2) : 111 - 116.
[60] Vogel D,Bickel S,Haider P. Classifying search engine queries using the Web as Imckground knowledge [ J ]. ACM
SIGKDD Explorations Newsletter, 2005 , 7(2) : 117 - 122.
[61] Shen D,Sun J T,Yang Q. Building bridges for Web query classification[ C ]//Pnx-eediny, of the 29th Annual Intema-
tional ACM SIGIR Conference on Reseawh and Development in Information Retrieval, 2006: 131 -138.
[62] Hu J,Wang G,Lochovsky F. Understanding user's query intent with Wikipedia[ C]//WWW 2009: Proceeding7a of the
18th International Conference on World Wide Web, 2009: 471 -480.
[63] Yoon S,Jatowt A,Tanaka K. Intent-based categorization of search results using questions from Web Q&A corpus[Jl.
Web Information System Enpineering Lecture Notes in Computer Science, 2009(5802) : 145 -158.
[64] Zaragoza H. Information retrieval: Algorithms and heuristics[Jl. Information Retrieval, 2002, 5(2) : 2'71 -274.
[65 ] Beeferman D,Berger A. Agglomerative clustering of a search query log[ Cl//Proceedings of the 6th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2000: 407 -416.
[66] Li X,Wang Y,Shen D. Inwning with click ETaph for query intent classification[.l]. ACM Transactions on Information
Syatems, 2010, 28(3) : 121 -140.
[67] Szummer M,Jaakkola T. Partially labeled classification with Markov random walks[J]. Advances in Neutral Information
Processing Systems, 2001, 14(2) : 945 -952.
[68] Zhu X J,Chahramani Z B. Learning from labeled and unlabeled data with label propagation. CMU - CALI) -02 - 107
[ R]. Pittsburgh: Carnegie Mellon University, 2002.
[6)] Zhou D,Bousquet O,Ial T. Learning with local and global consistency[.ll. Advances in Neutral Information Processing