Page 207 - Journal of Library Science in China, Vol.47, 2021
P. 207
206 Journal of Library Science in China, Vol.13, 2021
密平, 苏新宁. 面向本体学习的中文专利术语抽取研究[J]. 情报学报, 2016, 35(6): 573-585. )
[19] WANG K, XIA R. A survey on automatical construction methods of sentiment lexicons[J]. Acta
Automatica Sinica, 2016, 42(4): 495-511. (王科, 夏睿. 情感词典自动构建方法综述[J]. 自动化学报,
2016, 42(4): 495-511. )
[20] PORIA S, CAMBRIA E, GELBUKH A. Aspect extraction for opinion mining with a deep
convolutional neural network[J]. Knowledge-Based Systems, 2016, 108: 42-49.
[21] YANG H, ZENG B, YANG J H, et al. A multi-task learning model for Chinese-oriented aspect polarity
classification and aspect term extraction[J]. Neurocomputing, 2021, 419: 344-356.
[22] LI G, LIU G X, MAO J, et al. A sentiment label extraction method based on dependency parsing[J].
Library and Information Service, 2014, 58(14): 12-20. (李纲, 刘广兴, 毛进, 等. 一种基于句法分析的
情感标签抽取方法[J]. 图书情报工作, 2014, 58(14): 12-20. )
[23] YU S W, LU Q, CHEN W L. Fine-grained opinion mining based on feature representation of domain
sentiment lexicon[J]. Journal of Chinese Information Processing, 2019, 33(2): 112-121. (郁圣卫, 卢奇,
陈文亮. 基于领域情感词典特征表示的细粒度意见挖掘[J]. 中文信息学报, 2019, 33(2): 112-121. )
[24] OUYANG J. Visual analysis and exploration of ancient texts for digital humanities research[J]. Journal
of Library Science in China, 2016, 42(2): 66-80. (欧阳剑. 面向数字人文研究的大规模古籍文本可视
化分析与挖掘[J]. 中国图书馆学报, 2016, 42(2): 66-80. )
[25] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for
language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association
for Computational Linguistics, 2018: 4171-4186.
[26] LÓPEZ-SANTILLÁN R, MONTES-Y-GÓMEZ M, GONZÁLEZ-GURROLA L C, et al. Richer
document embeddings for author profiling tasks based on a heuristic search[J]. Information Processing
& Management, 2020, 57(4): 102227.
[27] XIAO L J, MENG T, WANG W, et al. Entity recognition of intelligence method based on deep
learning: taking area of security intelligence for example[J]. Data Analysis and Knowledge Discovery,
2019, 3(10): 20-28. (肖连杰, 孟涛, 王伟, 等. 基于深度学习的情报分析方法识别研究——以安全情
报领域为例[J]. 数据分析与知识发现, 2019, 3(10): 20-28. )
[28] WU J, CHENG Y, HAO H, et al. Automatic extraction of Chinese terminology based on BERT
embedding and BiLSTM-CRF model[J]. Journal of the China Society for Scientific and Technical
Information, 2020, 39(4): 409-418. (吴俊, 程垚, 郝瀚, 等. 基于BERT嵌入BiLSTM-CRF模型的中文
专业术语抽取研究[J]. 情报学报, 2020, 39(4): 409-418. )
[29] HONG L, HOU W, WU Z, et a. A cooperative crowdsourcing framework for knowledge extraction
in digital humanities-cases on Tang poetry[J]. Aslib Journal of Information Management, 2020, 72(2):
243-261.
[30] HU J H, CEN Y H, WU C Y. Constructing sentiment dictionary with deep learning: case study of
financial data[J]. Data Analysis and Knowledge Discovery, 2018, 2(10): 95-102. (胡家珩, 岑咏华, 吴
承尧. 基于深度学习的领域情感词典自动构建——以金融领域为例[J]. 数据分析与知识发现,
2018, 2(10): 95-102. )
—Translated by Author from 中国图书馆学报, 2021, No.4
Revised by ZHAO Dandan